

Speaker: Daneng Yang (University of California, Riverside)

in collaboration with:

Haipeng An, Zhen Hu (Tsinghua University), Zhen Liu (University of Minnesota)

Nov 11, 2021

- Co-annihilating DM and long lived NLP
- Analysis strategies
- Data processing
- Vertex reconstruction and signal efficiencies
- Limit contours

Public collision data from http://opendata.cern.ch

Co-annihilating DM and long lived NLP

Displaced vertex is a novel feature distinguishable from SM backgrounds

- Feeble couplings: RPV SUSY, Hidden sector models, freeze-in
- ➢ Heavy mediators: RHv
- Phase space squeezing: Nearly degenerate states (Focus of this study)

 $https://indico.cern.ch/event/607314/contributions/2542309/attachments/1447873/2231444/20170424_LLPs.pdf$

Review: https://arxiv.org/pdf/1903.04497.pdf

Co-annihilating DM and long lived NLP

Generic requirements to produce the signatures of interest

- Small mass splitting
- Z2 symmetry: the LSP fly outside the detector
- SM partners: the NLP should decay into the LSP + some SM particles

Natural models:

- Fermionic DM (SUSY): stop -> t* bino
- Bosonic DM (Extra-dim/LHT): tH -> t* AH

Displaced

- ft track

monojet

$$c\tau_{\tilde{t}} \approx 1.4 \text{ mm} \left(\frac{\mathrm{m}_{\tilde{t}}}{500 \text{ GeV}}\right) \left(\frac{20 \text{ GeV}}{\Delta}\right)^8$$

$$c\tau_{t_H} \approx 7.4 \text{ mm} \left(\frac{m_{t_H}}{500 \text{ GeV}}\right) \left(\frac{40 \text{ GeV}}{\Delta}\right)^{10}$$

Bonus:

Lightest stable particle provides a DM candidate Coannihilation avoids DM being over-abundant

Analysis strategies

Signatures

- PF MET trigger
- Reconstruct displaced vertices based on some displaced tracks

Displaced soft tracks

Challenges

- Hundreds of soft tracks
- Background from misidentified track
- Mis-association of tracks in vertex reconstruction

• Dataset: CMS 2012 MET primary dataset Run B, Run C, integrated luminosity 11.6 $\rm fb^{-1}$

• CMSSW 5.3.32 with build-in tools from the Docker image

Data processing

- Trigger: PFMET > 150 GeV
- +Preselection: at least one jet pT > 150 GeV
- local sample size ~300 G

Invariant mass of reconstructed displaced vertices

Vertex reconstruction and signal efficiencies

Signal samples

- MG5_aMC@NLO+Pythia8
- MLM 1+2 jets matching
- Fastjet3 for jet clustering
- Simulate stop/tH decay vertices based on the their widths, and the Pythia R-hadron decay program.

CMS detector simulation?

- Compute KEY efficiencies for the MC samples
- Track efficiencies
- Vertex reconstruction efficiencies

Track selection and efficiencies

Track selections

 $p_T > 1 \text{ GeV}$ $|\eta| < 2.4$

Track efficiencies

Reco: 90%

$$\varepsilon(|d_{xy}/\sigma_{d_{xy}}| > 4) = \frac{N(\sigma_{d_{xy}} < |d_{xy}^0|/4|p_T^0)}{N(\sigma_{d_{xy}} > 0|p_T^0)}$$
Zero refers to the quantities of a

sample of high fidelity tracks.

High fidelity tracks: ➤ Uncertainty distribution of real tracks

Vertex reconstruction and signal efficiencies

Parametrized vertex efficiencies for phenomenological studies

- Signal like events from the CMS ttbar sample
 - Generator level B_0 , \overline{B}_0 hadronic decays
 - Energy in the range 10-30 GeV
 - Vertex position from the beam-line: 0.5-18 mm
- Two methods for a proof of principle (large overlap fractions)
 - Track fraction method
 - Vertex distance method
- $\blacklozenge \ge 4$ displaced tracks
- d_{BV} from 0.1 to 20 mm

N_{simulated,displaced}=N1

Catalog	$N_{aen.tk} = 2$	$N_{aen.tk} = 3$	$N_{aen.tk} = 4$	$N_{aen.tk} = 5$	$N_{aen.tk} > 6$
Efficiency from TF (%)	23.8 ± 0.4	36.6 ± 1.0	46.1 ± 2.9	45.3 ± 6.2	32.4 ± 10.8
Efficiency from VD (%)	17.5 ± 0.3	25.7 ± 1.0	32.6 ± 2.4	32.6 ± 5.0	40.5 ± 12.4
Overlapping fraction (%)	59.7	62.0	64.3	70.5	83.3
Vertex error (μm)	173	170	164	175	155
Vertex error RMS (μm)	110	110	103	119	94.5
Probability of passing $N_{vtx,tk} \ge 2$	1.0	1.0	1.0	1.0	1.0
Probability of passing $N_{etx,th} \geq 3$	0.61	0.78	0.83	0.82	0.83
Probability of passing $N_{vtx,tk} \ge 4$	0.23	0.39	0.54	0.64	0.58

Vertex reconstruction and signal efficiencies

We have limited data and cannot fully exploit signal features

Selection	Data	Signal BM
MET primary	4.3×10^{7}	-
$p_{\rm T}^{j1} > 150 { m ~GeV}, E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	1.4×10^{6}	830
One displaced vertex $(N_{vtx,tk} \ge 2)$	3.7×10^{5}	310
One displaced vertex $(N_{vtx,tk} \geq 3)$	4.7×10^{4}	240
One displaced vertex $(N_{vtx,tk} \ge 4, \text{ default})$	5.5×10^{3}	140
Two displaced vertices	76	9.8
$p_{\rm T}^{j1} > 300 { m ~GeV}, E_{\rm T}^{\rm miss} > 300 { m ~GeV}$	1	3.0
Two displaced vertices with vertex $H_{\rm T} < 40$	0	3.0

$$m_{ ilde{t}} = 360 ext{ GeV}, \qquad \Delta = 20 ext{ GeV}$$

Limit contours: SUSY stop-bino model

Our results (stop-bino model)

- 8 TeV 11.6 fb⁻¹
- 95 % CL FC limit
- Most sensitive in the compressed region
- Continuously transits into prompt analysis

Prompt CMS

- 8 TeV 19.7 fb⁻¹
- $\tilde{t} \rightarrow b l \bar{l} \tilde{\chi}_1^0$ channel
- Truncated at $c\tau=0.2$ mm

Limit contours: SUSY stop-bino, comparing with 13 TeV limits

Our results (stop-bino model)

- 8 TeV 11.6 fb⁻¹
- 95 % CL FC limit
- Most sensitive in the compressed region
- Continuously transits into prompt analysis

Prompt CMS

- 13 TeV 35.9 fb⁻¹
- $\tilde{t} \rightarrow bff' \tilde{\chi}_1^0$ channel, MVA approach
- Truncated at $c\tau=0.2$ mm

- Displaced vertices reconstructed from soft tracks can be sensitive to BSM longlived particles
- We searched for long-lived stop signals using the 8 TeV CMS open data
- We present competitive limits in the compressed region for both of the models
- Opendata can be a powerful tool to help theorists study backgrounds of non-conventional new physics searches

SUMMARY

BACKUP

Beam-spot correction

FIG. 8. Transverse track impact parameter distribution, computed with (right) and without (left) beam-spot correction. The figure is made using tracks from 10k data events.

Quality of vertex reconstruction

FIG. 4: Invariant mass of reconstructed displaced vertices using the Trimmed Kalman vertex filter with track $p_{\rm T}$ threshold 1 GeV (left) and 1.5 GeV (right).

Setting limits

Number of observed events	Number of background events	95% CL limit
0	0	3.1
0	1	2.3
0	2	1.8
0	0	3.1
1	0	5.1
2	0	6.7

Table 1: The Feldman-Cousins limit on the number of signal events under various scenarios of different number of observed and assumed background events.

Stop life time in the compressed region

Tree level analysis

$$\begin{split} \tilde{t}_1 &\equiv \cos\theta_{\tilde{t}}\tilde{t}_L + \sin\theta_{\tilde{t}}\tilde{t}_R \\ \chi_1^0 &\equiv N_{11}\tilde{B} + N_{12}\tilde{W}_3 + N_{13}\tilde{H}_u + N_{14}\tilde{H}_d \\ \mathcal{L}^{\rm tr} &= C_R^{(\ell)}\mathcal{O}_R^{(\ell)} + C_R^{(h)}\mathcal{O}_R^{(h)} + C_L^{(\ell)}\mathcal{O}_L^{(\ell)} + C_L^{(h)}\mathcal{O}_L^{(h)} \end{split}$$

For pure right handed stop and pure bino

$$\begin{split} \Gamma &= \frac{g_2^4 g_1^2 \Delta m^8}{20160 \pi^5 m_W^4 m_t^2 m_{\tilde{t}}} \\ c\tau &\approx 1.4 \ \mathrm{mm} \times \left(\frac{20 \ \mathrm{GeV}}{\Delta m}\right)^8 \end{split}$$

